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Star t ing  wi th  an  addi t ive  p rope r ty  for  d i s t r ibu t ions  o f  two statist ically 
i n d e p e n d e n t  r a n d o m  var ia tes  in t e rms  o f  different  s u m  func t ions ,  we have  
charac te r ized  two genera l  m e a s u r e s  assoc ia ted  with two d is t r ibu t ions  o f  a 
discrete r a n d o m  variate .  One  o f  these  m e a s u r e s  is logar i thmic ,  while the  
o the r  con ta ins  powers  o f  variables.  A n  in teres t ing  aspect  is tha t  unde r  
sui table  add i t iona l  b o u n d a r y  cond i t ions  the  loga r i thmic  m e a s u r e  leads  to 
m e a s u r e  o f  i n f o r m a t i o n  (directed divergence)  s tud ied  by Ku l lback  a n d  
m e a s u r e  o f  inaccuracy  s tud ied  by Kerr idge ,  while the  o ther  so lu t ion  leads  
to their  pa r ame t r i c  general iza t ions .  
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1. I N T R O D U C T I O N  

L e t  P = ( P l  . . . . .  Pn) ,  P~ /> O, ~ = l P ~  = 1, a n d  U = (u l  . . . . .  un),  u~ > O, 

~ =  1 u, ~< 1, b e  t w o  p r o b a b i l i t y  d i s t r i b u t i o n s  a s s o c i a t e d  w i t h  a d i s c r e t e  f i n i t e  

r a n d o m  v a r i a t e  X.  C o r r e s p o n d i n g  t o  t h e  d i s t r i b u t i o n s  P a n d  U c o n s i d e r  t h e  
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measures 

and 

I (P /U)  = A ~ p ~ l o g p ,  + B ~ pilog u~ 
i=l i=1 

(1) 

and 

and 

1 I, 
When ~ ---> 1, (5) reduces to (4), which is Kullback's (7~ directed divergence 

characterized by many authors. (2'4,5,7,1m 
Again measures (1) and (2) under the conditions 

1 1 1 1 I({1, 0}/{ 1, 1}) = 1, I({2, ~}/{~, ~}) = 1 (6) 

reduce respectively to 

=I(P/U) -~ - ~ p, log u~ (7) 
i = 1  

JB(P/U) = (2 - a -  1) -1 p~u~ e -  1 , /3 r 0 (8) 

When/3 ---> 0, (8) reduces to (7), which is Kerridge's ~6> measure of in- 
accuracy characterized by many authors. <5'e'oam 

Thus the measures studies by Kullback and Kerridge and their general- 
ized forms are included in (1) and (2) respectively. 

Moreover, (1) and (2) have the sum property 

I (P /U)  = ~ h(p~, u 0 (9) 
i = l  

where h(p, u) = Ap log p + Bp log u and h(p, u) = C -  l(p"ue - p), re- 
spectively. 

I~,~,e)(P/U) = C -1 p['u~ ~ - 1 (2) 

where A, B, and C ( r  0) are arbitrary constants and ~ and/3 are parameters. 
Measures (1) and (2) under the conditions 

I({1, 0}/{1, 1}) __ 1, I({�89 I}/{1, 1}) = 0 (3) 

reduce respectively to 

I I (P/U)  = 2 Pi log(p~/ui) (4) 
i = 1  
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Further, measures (1) and (2) respectively have the properties 

I ( P * Q / U * V )  = I ( P / U )  + I ( Q / V )  (10) 
and 

I(~,B~(P*Q/U*V ) = I<~,B~(P/U) + I<~,B~(Q/V) 

+ CI(~,~(P/U)I(~,e~(Q/V) (11) 

where for P = (Pl,  P2 .... , Pn), ~n= 1 Pi = 1 ; Q = (q~, q2 ..... qm), ~r~= 1 q1 ~ 1 ; 

P* Q = (plql  .... , Plqm;... ; P,~ql,..., Pnqm), etc. 
The property (10) is contained in (11) for C = 0. Thus a joint study could 

be made from (9) and (11). But in (10) and (1 I) the measure associated with 
P * Q  and U * V  is expressed in terms of same function of P, U and Q, V. 
It is of some interest to express I ( P * Q / U *  V) in terms of three different sum 
functions R(P /U) ,  S ( Q / V ) ,  and T ( P / U ) ,  satisfying the relation 

I (P*  Q~ U* V) = R ( P / U ) S ( Q / V )  + T ( P / U )  (12) 

In this communication we shall characterize the measures through a 
functional equation arising from the relation (12); the functional equation so 
obtained is in a way a generalization of Chaundy and McLeod's (3~ functional 
equation for two variables studied by Kannappan (5~ for characterizing (4) and 
(7). 

In what follows we shall assume 0 log 0 = 0 log(0/0) = 0 and all the 
logarithms are considered to the base 2. 

2. T H E  F U N C T I O N A L  E Q U A T I O N  

Let f ,  g, h, and k: [0, l] x (0, 1]--~ R (reals) be continuous functions 
such that the functions R, S, I, and T, respectively, could be expressed in 
terms of them as in (9). 

Thus (12) gives rise to following functional equation: 

i=l I=i i=l ]=1 i=l 

where ~p=Ip~ = ~}~=i qj = I, ~=i ui ~< I, and ~)~=I vs ~< I. 
Now we will obtain all the continuous solutions of the functional 

equation (13) in the following theorem. 

Theorem 2.1. The functional equation (13) admits of the following two 
sets of solutions. 

First set of solutions: 

h(p, u) = Lp + Ap logp + Bp log u (14) 

f ( p ,  u) = Mp  (15) 

g(p, u) = Np  + ( A / M ) p  logp + ( B / M ) p  log u (16) 

k(p,  u) = (L  - M N ) p  + Ap logp + Bp log u (17) 
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Second set o f  solutions 

h(p,  u) = L p  + Ix(p~u ~ - p)  (18) 

f ( p ,  u) = M p ~ u  e (19) 

g(p ,  u) = N p  + ( ix /M)(p~u ~ - p )  (20) 

k (p ,  u) = ( L  - M N ) p ~ u  B + (ix - L)(p~u ~ -- p)  (21) 

Here L, M, N, A, B, and Ix ( r  0) are arbitrary constants and ~ and /3  are 
parameters  (c~ r 1 ;/3 r 0, % t3 > 0). 

R e m a r k s .  Solutions which would also arise are (i) h(p,  u ) =  Lp,  
f ( p ,  u) = O, g(p ,  u) arbitrary, and k ( p ,  u) = Lp;  a n d  (ii) h(p,  u) = Lp,  
f ( p ,  u) arbitrary, g(p ,  u) = 0, and k (p ,  u) = Lp.  These have not  been in- 
cluded in the statement o f  the theorem because of  their triviality and futility. 

P r o o f  Let m, n, r, s, x, y, a, b, z, and c be any positive integers such that  
1 <<. m <~ n, 1 <~ r <~ s, 1 <~ x < y ,  1 <~ a < b , z  >1 ( n - m ) y / ( y -  x ) , a n d  
e >>. (s - r)b/(b - a). 

Setting 

p~ = m/n ,  P2 . . . . .  P~-m+l  = 1/n; ql = r/s, q2 . . . . .  qs- r+l  = 1Is 

uz = x /y ,  u2 . . . . .  u~-m+l = 1/z; vl = a/b, v2 . . . . .  v s - , + l  = l i e  

in (13) ( t ak ingn  = n - m +  l a n d m = s - r +  1 ) , w e g e t  

h(mr/ns ,  x a / y b )  + (s - r )h(m/ns ,  x / y e )  

+ (n - m)h(r/ns,  a/zb) + (n - m) (s  - r)h(1/ns,  1/ze) 

= { f ( m / n ,  x / y )  + (n - m) f (1 /n ,  l/z)} 

x {g(r/s,  a/b) + (s - r)g(1/s ,  l/c)) 

+ k(m/n ,  x / y )  + (n - m)k(1 /n ,  1/z) (22) 

N o w  t a k i n g r =  a =  1, b =  c , m  = x =  1, and y = z in (22), we get 

h(1/ns, 1/zc) = f ( 1 / n ,  1/z)g(1/s ,  1/c) + (1/s)k(1/n,  l / z )  (23) 

Again taking r = a = 1 and b = c in (22) and using (23), we get 

h(m/ns ,  x / y e )  = f ( m / n ,  x / y ) g ( 1 / s ,  1/e) + (1 /s )k(m/n ,  x / y )  (24) 

Similarly putt ing m = x = 1 and y = z in (22) and once again using 
(23), we get 

h(r/ns, a/zb)  = f ( 1 / n ,  1/z)g(r/s ,  a/b) + (r/s)k(1/n,  1/z) (25) 
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Finally, (22) together  with (23), (24), and (25) gives 

h(mr/ns, xa/yb) = f(m/n,  x/y)g(r/s, a/b) + (r/s)k(m/n, x/y) 
i.e., 

h(pq, uv) = f (p ,  u)g(q, v) + qk(p, u) (26) 

for  all rat ional numbers  p, q ~ [0, 1] and u, v ~ (0, 1]. 
F rom the continuity o f f ,  g, h, and k it follows that  (26) is valid for  all 

real numbers  x, y E [0, 1] and u, v E (0, 1]. 
Now setting p = u = 1 in (26), we get 

h(q, v) = f (1 ,  1)g(q, v) + qk(1, 1) (27) 

Again setting q = v = 1 and then p = u = 1 in (26), we get 

h(p, u) = f (p ,  u)g(1, 1) + k(p, u) (28) 

h(1, 1) = f (1 ,  1)g(1, 1) + k(1, 1) (29) 

Now when f (1 ,  1) = 0, (29) and (27) give 

h(p, u) = h(1, 1)p (30) 

Thus in this case an arbitrary g and k = h is a solution. Similarly by 
symmetry the other solution mentioned in the remarks follows. 

Thus in this case h(p, u) becomes a homogeneous  linear function. 
Next  when f (1 ,  1) v~ 0, (26) together with (27)-(29) gives 

h(pq, uv) f (p ,  u) = ~ [h(q, v) - qh(1, 1)] + qh(p, u) 

i.e., 

hl(pq, uv) - f ( p '  u) f (1 ,  ]3) h~(q, v) + qh~(p, u) 

where hi(p, u) = h(p, u) - ph(1, 1). 
N o w  because of  symmetry we have 

hl(pq, uv) = hl(qp, vu) 

Put t ingf l (p ,  u) = f (p ,  u) - pf(1, 1), this gives 

f l(P, u)hl(q, v) = A(q, v)h~(p, u) 
i.e., 

f~(p, u) = hhz(p, u) 

where h is an arbitrary constant.  
Now there arise three cases: 

Case 1. When h = 0, (33) gives (t5), 

f l(P,  u) = 0, i.e., f ( p ,  u) = f (1 ,  1)p = Mp 

(31) 

(32) 

(33) 
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In this case (31) becomes 

h~(pq, uv) = qhl(p, u) + phi(q, v) (34) 

Dividing both sides of (34) by pq and setting h~(p, u)/p = ~(p, u), we get 

c~(pq, uv) = (~(p, u) + ~(q, v) (35) 

The most general continuous solutions of (35) are m 

(}(p, u) = A log p + B log u (36) 

where A and B are arbitrary constants. 
Equations (36) and (27)-(29) give the first set of solutions. 

Case 11. When k ~ 0, h~(p, u) ~ O, (31) together with (33) gives 

h~(pq, uv) = phi(q, v) + qh~(p, u) + ix-~h~(p, u)h~(q, v) (37) 

where/~ = f(1,  1)/k (50) .  

Now setting p + t*- ~h~(P, u) = E(p, u) in (37), we get 

E(pq, uv) = E(p, u)E(q, v) (38) 

The most general continuous solutions of (38) are given by 

E(p, u) = p"u ~ and E(p, u) = 0 (39) 

where ~ and/3 are arbitrary parameters. 
Now the solution E(p, u) = p~u ~ in (39) gives (18), 

h(p, u) = h(1, 1)p + tz(p~u B - p) = Lp + iz(p~u ~ - p) 

The case E(p, u) = 0 is already covered. 
Now (38) together with (27)-(29) and (33) gives (19)-(21). 

Case IlL When h~(p, u) =- O, i.e., h(p, u) = h(1, 1)p, in this case also h 
becomes a homogeneous linear function which is covered as a particular case 
in the solutions already obtained. 

3. C H A R A C T E R I Z A T I O N  OF D IRECTED D I V E R G E N C E  
A N D  I N A C C U R A C Y  

Consider a discrete random variate X taking finite number of values 
xl,...,x,~ and let there be two distributions P = (Pl .... ,p~), ~=lP~ = 1, 
p~ /> 0, and U -- (ul,..., u~), ~p= 1 u~ ~< 1, us > 0, associated with it. 

Corresponding to the solut ionf(p,  u) we shall associate an information- 
theoretic measure involving the distributions P and U given by 

I (P /U)  = ~ h(p~,u 0 (40) 
i = 1  

under suitable boundary and normalizing conditions. 
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Theorem 3.1. (Characterization of  Directed Divergence). The measures 
associated with the distributions P and U corresponding to the continuous 
solutions (14) and (18) of  the functional equation (13) under the conditions 

h(1, 1) = 0, h(1, 1) = 1, h(�89 �89 = 0 (41) 

are given respectively by I I (P/U)  and II~(P/U). 

Proof Condition h(1, 1) = 0 in the solutions (14) and (18) gives L = 0. 
Thus solutions (14) together with h(1, � 8 9  1 and h(�89 � 8 9  0 give 

A = 1, B = - 1 and then I I (P/U)  follows from (40). 
Again solution (18) together with h(1, �89 = 1 gives tz = (2 -e - 1)-1; 

then h(�89 �89 = 0 gives ~ + /3  = 1 and thus II~(P/U) follows from (40). 
Quantity iI~(P/U) has also been studied by Rathie and Kannappan.  (8~ 

Theorem 3.2. (Characterization of Inaccuracy). The measures associated 
with the distributions P and U corresponding to the continuous solutions 
(14) and (18) of the functional equation (13) under the conditions 

h(1, 1) = 0, h(1, k) = 1, h(�89 �89 = �89 (42) 

are given respectively by J ( P / U )  and Je(P/U).  

Proof Condition h(l, 1) = 0 gives L = 0 for the solutions (14) and 
(18). 

Thus solution (14) together with h(1, �89 = 1 and h(�89 �89 = �89 gives A = 0 
and B = - 1  and then 2I(P/U) follows from (40). 

Again solution (18) together with h(1, �89 = 1 gives /~ = (2 -8 - 1)-1; 
then h(�89 �89 = �89 gives ~ = 1 and thus 2IB(P/U ) follows from (40). 
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