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Starting with an additive property for distributions of two statistically
independent random variates in terms of different sum functions, we have
characterized two general measures associated with two distributions of a
discrete random variate. One of these measures is logarithmic, while the
other contains powers of variables. An interesting aspect is that under
suitable additional boundary conditions the logarithmic measure leads to
measure of information (directed divergence) studied by Kullback and
measure of inaccuracy studied by Kerridge, while the other solution leads
to their parametric generalizations.
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1. INTRODUCTION

Let P = (p13"'9pn)5 pi 2 09 Z%.L:lpi = 17 and U = (ul,---y un)a U; > 07
>, u; < 1, be two probability distributions associated with a discrete finite
random variate X. Corresponding to the distributions P and U consider the

Supported by CSIR (India) research fellowship.
1 Faculty of Mathematics, University of Delhi, Delhi, India.

169

© 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this pub-
lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher.



170 Inder Jeet Taneja

measures
I(PIU)= A ipilogpi—l-Bipilogui )]
and o o
LapPIV) = C( 3 pewd = 1) )

where A, B, and C (5£0) are arbitrary constants and « and 8 are parameters.
Measures (1) and (2) under the conditions

IL 05, 3 =1, I, 3/ =0 3
reduce respectively to
{(P[U) = 2, pilog(pfu) @

and

J(PJU) = (227 — 1)—1(2%%—“ - 1), @ # 1 (5)

When o —- 1, (5) reduces to (4), which is Kullback’s™ directed divergence
characterized by many authors,®-4.5.7-19
Again measures (1) and (2) under the conditions

I, 05 =1L  I({%8/43.4) =1 (6)
reduce respectively to

A(PU) = =3 pilogu 0

and

IPI0) = @0 = D 3 pa ~ 1), B0 ®)

When B — 0, (8) reduces to (7), which is Kerridge’s®® measure of in-
accuracy characterized by many authors.®-8.9.1®

Thus the measures studies by Kullback and Kerridge and their general-
ized forms are included in (1) and (2) respectively.

Moreover, (1) and (2) have the sum property

IWW=ZWMD ©)

where h(p,u) = Aplogp + Bplogu and A(p,u) = C~(p*uf — p), re-
spectively.
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Further, measures (1) and (2) respectively have the properties

) I(P*QIU*V) = I(P[U) + I(Q]¥) (10)
an
Le(PFQIU*V) = Ia sfPIU) + Lun(Q/V)
+ Clie,p(P/U)ea.(0/Y) (i

where for P = (1, Daseees Pas 20=10 = 15 @ = (@15 G250 Gn)s 25165 < 15
P*Q = (P1q1 s P1Gms -+ Pa1sees Puln)s €LC.

The property (10) is contained in (11) for C = 0. Thus a joint study could
be made from (9) and (11). But in (10) and (11) the measure associated with
P*Q and U*V is expressed in terms of same function of P, U and Q, V.
It is of some interest to express I(P*Q/U*V) in terms of three different sum
functions R(P/U), S(Q/V), and T(P/U), satisfying the relation

I(P*QIU*V) = R(PIU)S(QIV) + T(P[U) (12)

In this communication we shall characterize the measures through a
functional equation arising from the relation (12); the functional equation so
obtained is in a way a generalization of Chaundy and McLeod’s® functional
equation for two variables studied by Kannappan® for characterizing (4) and
D).

In what follows we shall assume 0 log 0 = 01og(0/0) = 0 and all the
logarithms are considered to the base 2.

2. THE FUNCTIONAL EQUATION

Let £, g, h, and k: [0, 1] x (0, 1] — R (reals) be continuous functions
such that the functions R, S, I, and 7, respectively, could be expressed in
terms of them as in (9).

Thus (12) gives rise to following functional equation:

> > hpgsuv) = > > f(pouelgnv) + O k(pnw)  (13)
i=14=1 i=17=1 i=1
where 27, p; = 21 q; = 1, 21~ 4 < 1, and >fav; < L
Now we will obtain all the continuous solutions of the functional
equation (13) in the following theorem.

Theorem 2.1. The functional equation (13) admits of the following two
sets of solutions.
First set of solutions:

Mp,u) =Lp + Aplogp + Bplogu (14)
S(p,u) = Mp 15)
g(p,u) = Np + (A/M)plogp + (B/M)plogu (16)

k(p,u) = (L — MN)p + Aplogp + Bplogu (17)
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Second set of solutions

h(p,u) = Lp + p(p“u® — p) (18)
fp, u) = Mp“u” (19
g(p,u) = Np + (u/M)(p*v* — p) (20)
k(p,w) = (L — MN)p*u* + (p — LY(p"u* — p) @1

Here L, M, N, 4, B, and p (#0) are arbitrary constants and « and 8 are
parameters (« # 1; 8 # 0, o, B > 0).

Remarks. Solutions which would also arise are (i) A(p,u) = Lp,
S(p,u) = 0, g(p,u) arbitrary, and k(p,u) = Lp; and (ii) h(p,u) = Lp,
S(p, ) arbitrary, g(p,u) = 0, and k(p, u) = Lp. These have not been in-
cluded in the statement of the theorem because of their triviality and futility.

Proof. Letm, n,r, s, x, ¥, a, b, z, and ¢ be any positive integers such that
l<sm<nl<r<s,1<x<yl<a<b zz({n—-myl(y—x),and
¢z (s —r)b/b — a.

Setting
pLr=mn, py=-=p,_p = Un; qi=rls, qa = =qs_101 = 1/s
Uy = X/y, Uy == Uy _ps1 = I/Za Uy = Cl/b, Ug == VUs_yy1 = l/C'

in (13) (takingn =n —m + landm = s — r + 1), we get
h(mr(ns, xa/ yb) + (s — r)h(m/ns, x/yc)
+ (n — mh(r/ns, a/zb) + (n — m)(s — r)h(1/ns, 1/zc)
= {flm/n, x/y) + (n — m)f(1/n, 1/2)}
x {g(r/s, afb) + (s — r)g(1/s, 1/c)}
+ k(m/n, x/y) + (n — m)k(1/n, 1/2) 22)
Now takingr=a=1,b=c¢,m = x = 1, and y = z in (22), we get
h(l/ns, 1/zc) = f(1/n, 1/2)g(1)s, 1/c) + (1/s)k(1/n, 1/2) (23)
Again taking r = a = 1 and b = ¢ in (22) and using (23), we get
h(m[ns, x| yc) = flm/n, x| y)g(1/s, 1/c) + (1/s)k(m/n, x|y) 24

Similarly putting m = x = 1 and y = z in (22) and once again using
(23), we get

h(r/ns, a/zb) = f(1/n, 1/2)g(r/s, a/b) + (r/s)k(1/n, 1/2) (25)
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Finally, (22) together with (23), (24), and (25) gives
h(mr(ns, xa| yb) = f(m[n, x| y)g(r/s, a/b) + (r|s)k(m/n, x/y)

h(pq, w) = f(p, wg(g, v) + gk(p, u) (26)

for all rational numbers p, ¢ € [0, 1] and u, v € (0, 1].

From the continuity of £, g, #, and k it follows that (26) is valid for all
real numbers x, y € [0, 1] and u, v € (0, 1].

Now setting p = v = 1 in (26), we get

ie.,

h(g, v) = f(1, Dg(g, v) + gk(1, 1) @7
Again settingg = v = 1 and then p = u = 1 in (26), we get
hp, u) = f(p, w1, 1) + k(p, u) 28)
A1, D =f1,Dg(L, 1) + &(1, 1) (29)
Now when f(1, 1) = 0, (29) and (27) give
h(p, u) = h(1, D)p (30)

Thus in this case an arbitrary g and k = & is a solution. Similarly by
symmetry the other solution mentioned in the remarks follows.

Thus in this case A(p, u) becomes a homogeneous linear function.

Next when f(1, 1) % 0, (26) together with (27)-(29) gives

Wpg, w) = L2 Uhtq, o) - ahct, 1] + gk, 1

ie.,

(pg, w) = LLD (0, 0) + gha(p, ) &)

where hl(p: u) = h(pa M) - ph(ls 1)
Now because of symmetry we have

hi(pg, wo) = hi(qp, vu)
Putting f1(p, u) = f(p, u) — pf(1, 1), this gives
fl(p, u)hl(qs U) = fl(q, U)hl(pa u) (32)
flp, w) = Mu(p, u) (33)

where A is an arbitrary constant.
Now there arise three cases:

Case I. When A = 0, (33) gives (195),
filp,w) =0, e, f(p,u) =S, 1)p= Mp

ie.,
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In this case (31) becomes

hi(pq, w) = ghy(p, u) + phi(q, v) (34
Dividing both sides of (34) by pg and setting 4,(p, u)/p = ¢(p, u), we get
$(pg, uv) = $(p, u) + $(g, v) (35)
The most general continuous solutions of (35) are®®
é(p,u) = Alogp + Blogu (36)

where 4 and B are arbitrary constants.
Equations (36) and (27)-(29) give the first set of solutions.

Case II. When A # 0, hy(p, u) # 0, (31) together with (33) gives
hy(pg, uv) = phi(q, v) + qhy(p, u) + p " hi(p, Whi(g, v) (37
where p = f(1, 1)/A (£0).
Now setting p + p~*h(p, u) = E(p, u) in (37), we get

E(pq, uv) = E(p, wE(g, v) (38)
The most general continuous solutions of (38) are given by
E(p, u) = p*u® and E(p,u)=20 39

where « and # are arbitrary parameters.
Now the solution E(p, u) = p*u” in (39) gives (18),

h(p, u) = h(1, Dp + w(p“® — p) = Lp + p(p"w* — p)
The case E(p, u) = 0 is already covered.
Now (38) together with (27)~(29) and (33) gives (19)-(21).

Case III. When h(p, u) = 0, i.e., i(p, u) = h(1, 1)p, in this case also A
becomes a homogeneous linear function which is covered as a particular case
in the solutions already obtained.

3. CHARACTERIZATION OF DIRECTED DIVERGENCE
AND INACCURACY

Consider a discrete random variate X taking finite number of values
X1,.., X, and let there be two distributions P = (py,.ee, Pn)y 201 pi = 1,
pi = 0,and U = (ug,..., u,), >y u; < 1, 4, > 0, associated with it.

Corresponding to the solution f{p, «) we shall associate an information-
theoretic measure involving the distributions P and U given by

IP[U) = 3 o) (“0)

under suitable boundary and normalizing conditions.
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Theorem 3.1. (Characterization of Directed Divergence). The measures
associated with the distributions P and U corresponding to the continuous
solutions (14) and (18) of the functional equation (13) under the conditions

W1, 1) =0, AKlL,PH=1 A1 =0 (41)
are given respectively by 1/(P/U) and 1,(P/U).

Proof. Condition A(1, 1) = 0 in the solutions (14) and (18) gives L = 0.

Thus solutions (14) together with A(1,%) = 1 and A%, 4) = 0 give
A =1, B = —1 and then J(P/U) follows from (40).

Again solution (18) together with A(1,1) = 1 gives p = 27 — 1)7%;
then A(%, 1) = 0 gives « + 8 = 1 and thus ,7(P/U) follows from (40).

Quantity ,7,(P/U) has also been studied by Rathie and Kannappan.®

Theorem 3.2. (Characterization of Inaccuracy). The measures associated
with the distributions P and U corresponding to the continuous solutions
(14) and (18) of the functional equation (13) under the conditions

W, ) =0, A1, PH=1 M} =1% 42
are given respectively by ,J/(P/U) and ,I;(P/U).

Proof. Condition A(1,1) = 0 gives L = 0 for the solutions (14) and
(18).

Thus solution (14) together with (1, 1) = 1 and (%, %) = L gives 4 = 0
and B = —1 and then ,/(P/U) follows from (40).

Again solution (18) together with A(1,4) = 1 gives p = (2% — 1)77%;
then (%, 1) = 4 gives « = 1 and thus ,[,(P/U) follows from (40).
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